Strong Machine Learning Attack against PUFs with No Mathematical Model

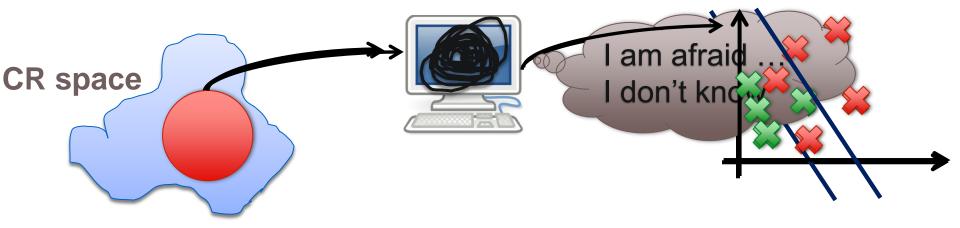
Fatemeh Ganji, Shahin Tajik, Fabian Faessler, Jean-Pierre Seifert

Motivation

- Integrated circuits (ICs): vulnerability to piracy and overbuilding attacks [1]
- PUFs: Physically Unclonable Functions
 - Inspired by the characteristics of human finge inherent, unclonable

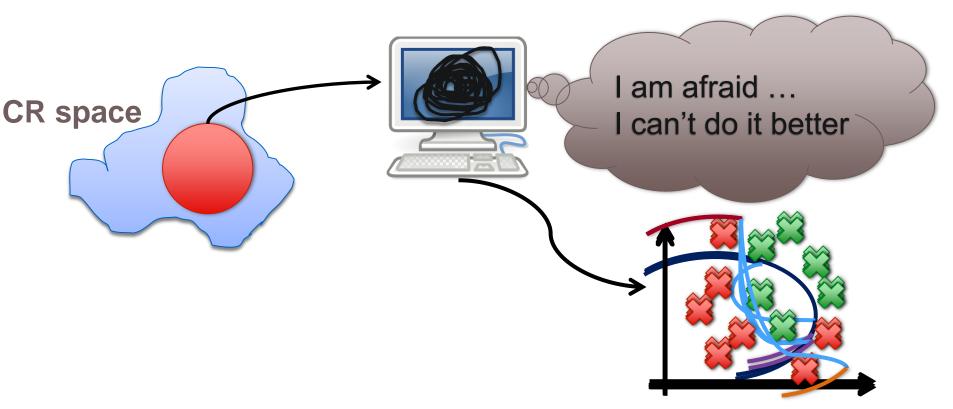
Strong and weak PUFs

Original


IC #1

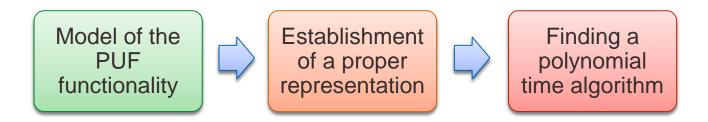
Original

IC #2


Unclonable?!

Empirical vs. PAC learning attacks

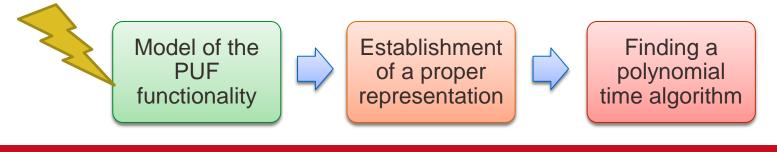
- Empirical learning approaches
 - No pre-defined levels of accuracy and confidence
- PAC learning approaches
 - For given levels of accuracy and confidence


Strong vs. weak PAC learning

- A Weak learner: the accuracy of the model delivered is only slightly better that 50%
- Weak PAC learning and strong PAC learning are equivalent [3]

Why attackers win

 Linear behavior of Arbiter PUFs, cf. [4,5]: an example of the model representing the internal functionality of the respective PUF



- What happens if this model is unknown?
- Prime example: Bistable Ring PUFs

BR PUFs

No precise mathematical model of the BR PUF functionality

CHES 2016

PUF as a Boolean function

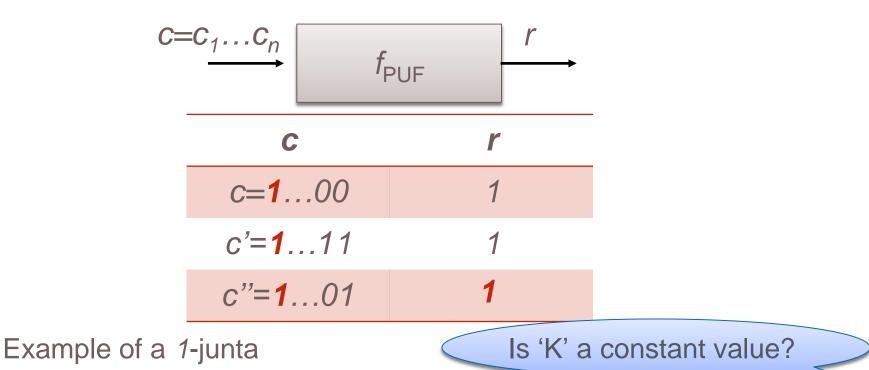
$$\xrightarrow{C=C_1...C_n} f_{\mathsf{PUF}} \xrightarrow{r}$$

• f_{PUF} : a Boolean function from {0,1}ⁿ to {0,1}, shown as

$$f_{PUF}: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$$

- Linear Boolean functions
 - f(C+C') = f(C) + f(C')

CHES 2016


Linearity over \mathbb{F}_2

• Linear function over \mathbb{F}_2 : **ONLY** parity function

No PUF represented as a Boolean function over \mathbb{F}_2 is linear

- Unequal influence of challenge bit positions on the respective responses
 How many influential bits?
- Determined by the notion of average sensitivity I(f_{PUF})
- c_1 is chosen uniformly at random • Friedgut's theorem relevant bits [6]=0... c_n $I(f_{PUF}) \coloneqq \sum_{i=1}^{n} \Pr[r_2 \neq r_1]$

Learning juntas

- K-junta learning: finding the relevant coordinates
 - Algorithm presented by, e.g., Angluin [7]

Ο

What we know about BR PUFs

- Practical observations
 - Statistical analysis of the 2048 CRPs, given to a 64-bit BR-PUF: 5 influential bits [8]
 - Our experiments on 64-bit BR PUFs implemented on Altera Cyclone IV FPGAs
 - results for 30000 CRPs: 7 influential bits
- Mathematical, more precise observation
 - Computation of the average sensitivity

.iai <u>vils</u>						
	n	l (f _{PUF})				
ion	4	1.25				
ity	8	1.86				
	16	2.64				
	32	3.6				
	64	5.17				

Experimental setup and results

• 64-bit BR PUFs implamented the condition of the ran Cyclone IV A SAs

• Size of training set: 100 and 1000 CR #boosting Accuracy [%] Non-linearity of

Open source machine #CRP=100
 MacBook Pro With 2.6 GH\$4-#\$tel Cor
 63.73
 of RAM
 10
 67.12
 81.09

Learning algorithm for Monomial M_{n,K}. a PAC
 junta

Conjunction of the relevant variables

More complex representation, e.g., Decision Lists (DL): 98.32% accurate final model

GΒ

Boosting

Conclusion

- Successful attack against PUFs with no mathematical model
 - Spectral properties of Boolean functions
 - Boosting technique
- Introduction of a new metric to assess the security of PUFs: the average sensitivity
- In practice?

References

- [1] Koushanfar.: Hardware metering: A survey. Introduction to Hardware Security and Trust, 2012.
- [2] Ruehrmair et al.: Modeling Attacks on Physical Unclonable Functions. In: Proc. of CCS 2010.
- [3] Schapire, R.E.: The Strength of Weak Learnability. Machine learning, 1990.
- [4] Ganji et al.: PAC Learning of Arbiter PUFs. Journal of Cryptographic Engineering, 2016.
- [5] Angluin: Learning regular sets from queries and counterexamples. Information and computation, 1987.
- [6] Friedgut, E.: Boolean Functions with Low Average Sensitivity Depend on Few Coordinates. Combinatorica , 1988.
- [7] Angluin: Queries and Concept Learning. Machine Learning, 1988.
- [8] Yamamoto et al.: Security Evaluation of Bistable Ring PUFs on FPGAs using Differential and Linear Analysis. In Proc. of FedCSIS, 2014.

Thank you for you attention!

Outline

- Introduction and motivation
 - Let's talk about PAC learning!
- Why having a mathematical Model matters
- PAC learning with no mathematical model
 - Example of BR PUFs
- Conclusion

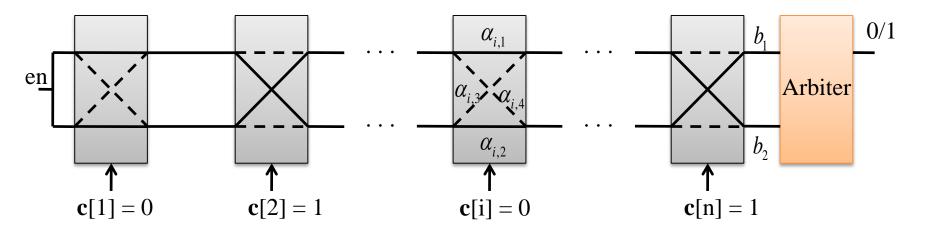
Digital intrinsic PUFs

- Key idea: Manufacturing process variations on different chips used to generate PUFs
- Physically unclonable functions
 - Input to output mappings

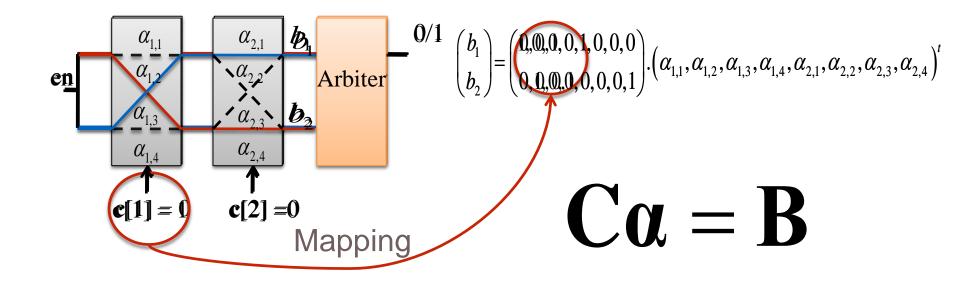
$$\begin{array}{c} \textbf{C} \\ \textbf{C} \\ \textbf{C} \end{array} \xrightarrow{\textbf{C}} \textbf{C} \end{array} \xrightarrow{\textbf{C}} \textbf{C} \\ \textbf{C} \\$$

- Strong and weak PUFs
 Modeling attacks [3]
- In practice: two phases, namely, enrolment and verification

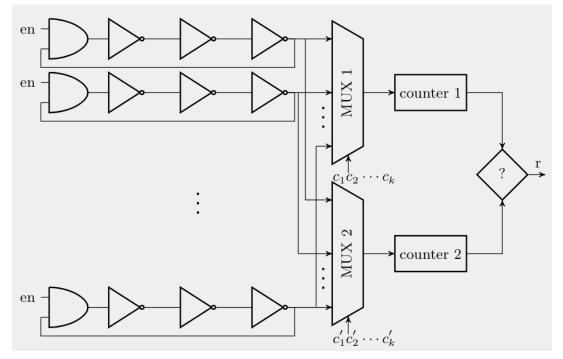
Motivation (1)



- Wide-spread use of Integrated Circuits (ICs) in different applications
 - Authentication, Identification, Transaction, Communication
 - Key generation, key storing, and device fingerprinting



What we have learned: an example of PAC learning attacks

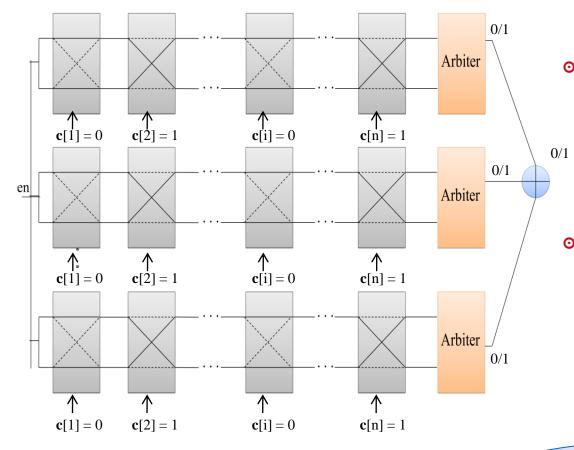

- The security is relying on an assumption:
 - The attacker cannot measure the delays in each stage

Arbiter PUFs and its linear behavior

- PAC learning for given levels of accuracy and confidence [4]
 - Representation: polynomial-size Deterministic Finite Automata (DFA)
 - Algorithm presented by Angluin [5]

RO PUFs

- The security is relying on an assumption:
 - The attacker cannot measure the frequencies of the rings

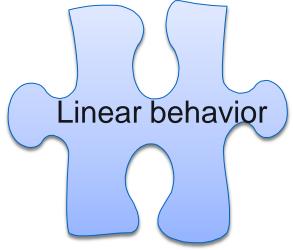

Fragile security of RO PUFs

- N ring-oscillators \rightarrow N(N-1)/2 pairs are possible
 - Non-exponential CRP space!
- PAC learning for given levels of accuracy and confidence [6]
 - Representation: polynomial-size Decision List (DL)
 - Algorithm presented by Rivest [7]
- The reason for success:
 - A hidden order of frequencies

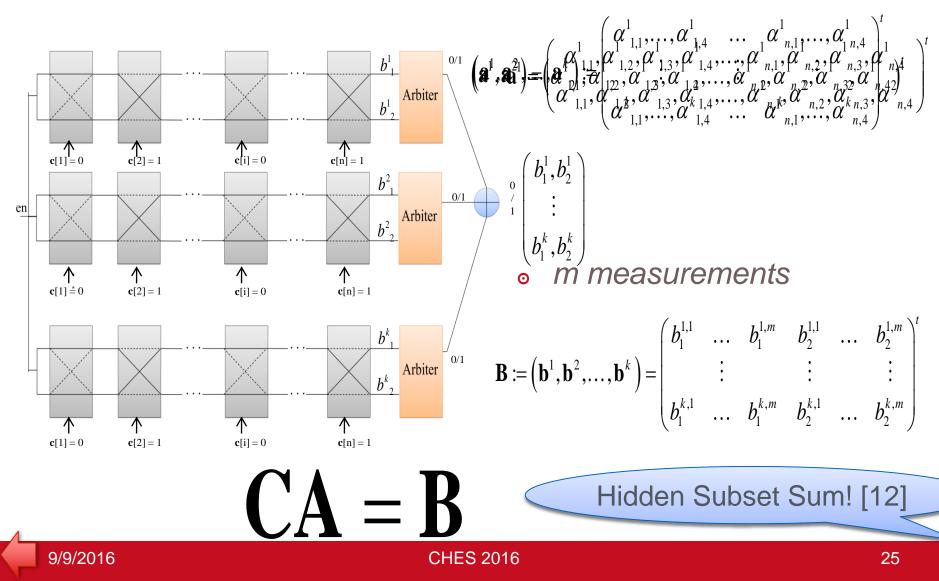
Hidden order

Refined architectures

Let's XOR k arbiter chains [8]



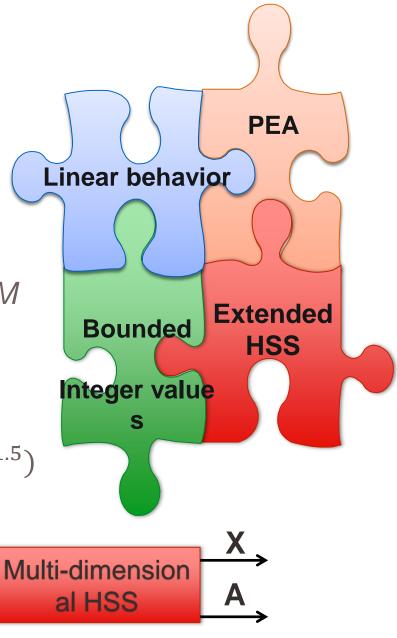
- Modeling attacks
 - Applicable only up to a certain number of chains [9,10]
- Side channel analysis
 - Successful but requires access to the challenges


Controlled PUFs [4]

Our successful hybrid attack

- Combination of a lattice basis reduction attack and a photonic side-channel analysis [14]
 - Disclosing the hidden challenges, and delays
 - Applicable to unlimited number of arbiter chains

Controlled XOR PUFs


Hybrid attack [1]

- Extension to Multi-dimensional HSS
 - In comparison to the HSS: smaller M

• HSS:
$$M \gg \left(\frac{\sqrt{mn(m-n-1)}}{4}\right)^n$$

PEA

• Multi-dimensional HSS: $M \gg O(m^{1.5})$

[1] Ganji et al.: Lattice Basis Reduction Attack against Physically Unclonable Functions, In In Proc. of CCS 2015.

 $f: \mathbb{R} \to \mathbb{Z}$

CHES 2016

B

Experimental setup and results

	PEA [1] s of		rec	A A A A
	Setting	Approach	(1 coi	on a virtual AMD64 server Total number of disclosed re and 32 GB of RAM) coefficients
	n=11, k=11, m=78 (the number of hidden coefficients=4 4)	HSS	2 ¹⁶⁰	44
		Multi-dimensional HSS	26	44
	n=32, k=32,	HSS		
Arbiter PU <u>http://magma</u>	m=370	Multi-dimensional HSS	2 ¹⁵	123

Noise: a real enemy?

Noisy PUFs

$$\xrightarrow{C=C_1...C_n} f_{PUF}$$

- Applying the same challenge \rightarrow Different responses
 - Due to the environmental variations
- Failure of the conventional learning methods

Is it possible to apply a PAC learning framework?

Yes! New PAC learning framework containing principles of learning theory and Boolean analysis