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Motivation

๏ Integrated circuits (ICs): vulnerability to piracy and 

overbuilding attacks [1]

๏ PUFs: Physically Unclonable Functions 

๏ Inspired by the characteristics of human fingerprint: unique, 

inherent, unclonable

๏ Strong and weak PUFs
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Empirical vs. PAC learning attacks

๏ Empirical learning approaches

๏ No pre-defined levels of accuracy and confidence

๏ PAC learning approaches 

๏ For given levels of accuracy and confidence
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CR space
I am afraid … 

I don’t know



Strong vs. weak PAC learning

๏ A Weak learner: the accuracy of the model delivered is only slightly 
better that 50%

๏ Weak PAC learning and strong PAC learning are equivalent [3]
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CR space
I am afraid …

I can’t do it better



Why attackers win

๏ Linear behavior of Arbiter PUFs, cf. [4,5]: an example of the 

model representing the internal functionality of the respective 

PUF

๏ What happens if this model is unknown?

๏ Prime example: Bistable Ring PUFs

9/9/2016 CHES 2016 5

Model of the 
PUF 

functionality

Establishment 
of a proper 

representation

Finding a 
polynomial 

time algorithm



BR PUFs

๏ No precise mathematical model of the BR PUF functionality
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PUF as a Boolean function

๏ fPUF: a Boolean function from {0,1}n to {0,1}, shown as 

fPUF: 𝔽2
n 
𝔽2

๏ Linear Boolean functions

๏ f(c+c’)= f(c)+ f(c’)
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fPUF

c=c1…cn r

c r= fPUF(c)

c=1…0 1

c’=1…1 1

c+c’=0…1 ???



Linearity over 𝔽2
๏ Linear function over 𝔽2: ONLY parity function

No PUF represented as a Boolean function over 𝔽2 is linear

๏ Unequal influence of challenge bit positions on the

respective responses

๏ Determined by the notion of average sensitivity I(fPUF)

๏ c1 is chosen uniformly at random

๏ Friedgut’s theorem relating this notion to the number of

relevant bits [6]
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How many influential bits?

c2=0…cn

c1=1…cn r1
fPUF

𝐼 𝑓𝑃𝑈𝐹 ≔ 

𝑖=1

𝑛

Pr[𝑟2 ≠ 𝑟1]

r2



Learning juntas

๏ Example of a 1-junta

๏ K-junta learning: finding the relevant coordinates

๏ Algorithm presented by, e.g., Angluin [7]
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fPUF

c=c1…cn r

c r

c=1…00 1

c’=1…11 1

c’’=1…01 1

Is ‘K’ a constant value? 



What we know about BR PUFs
๏ Practical observations 

๏ Statistical analysis of the 2048 CRPs, given to a 64-bit BR-

PUF: 5 influential bits [8]

๏ Our experiments on 64-bit BR PUFs implemented on Altera 

Cyclone IV FPGAs 

๏ results for 30000 CRPs: 7 influential bits 

๏ Mathematical, more precise observation

๏ Computation of the average sensitivity
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n I (fPUF)

4 1.25

8 1.86

16 2.64

32 3.6

64 5.17



Experimental setup and results

๏ 64-bit BR PUFs implemented on Altera Cyclone IV FPGAs

๏ Size of training set: 100 and 1000 CRPs

๏ Open source machine learning software Weka running on 

MacBook Pro with 2.6 GHz Intel Core i5 processor and 10 GB 

of RAM

๏ Learning algorithm for Monomial Mn,K: a very simple type of a K-

junta

๏ Conjunction of the relevant variables

๏ Adaboost
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Weak 

PAC 

learning

Non-linearity of 

PUFs over 𝔽2

Inf. bits

Boosting

Learning of Monomial Mn,K

#boosting 

iterations

Accuracy [%]

(#CRP=100)

Accuracy [%]

(#CRP=1000)

0 54.48 63.73

10 67.12 81.09

20 77.53 89.12

50 82.65 96.80

More complex representation, e.g., Decision Lists (DL): 98.32% 

accurate final model



Conclusion

๏ Successful attack against PUFs with no mathematical 

model

๏ Spectral properties of Boolean functions

๏ Boosting technique

๏ Introduction of a new metric to assess the security of 

PUFs: the average sensitivity 

๏ In practice?
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Thank you for you attention!
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?



Outline

๏ Introduction and motivation

๏ Let’s talk about PAC learning!

๏ Why having a mathematical Model matters

๏ PAC learning with no mathematical model

๏ Example of BR PUFs

๏ Conclusion
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Digital intrinsic PUFs

๏ Key idea: Manufacturing process variations on different chips 

used to generate PUFs

๏ Physically unclonable functions

๏ Input to output mappings

๏ Strong and weak PUFs

๏ In practice: two phases, namely, enrolment and verification
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Challenge responsePUFfPUF
c r

Modeling attacks [3]



Motivation (1)

1

7
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๏ Wide-spread use of Integrated

Circuits (ICs) in different

applications

๏ Authentication, Identification,

Transaction, Communication

๏ Key generation, key storing,

and device fingerprinting



What we have learned: an example of PAC learning attacks

๏ The security is relying on an assumption:

๏ The attacker cannot measure the delays in each stage
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Arbiter PUFs and its linear behavior

๏ PAC learning for given levels of accuracy and confidence [4]

๏ Representation: polynomial-size Deterministic Finite Automata (DFA)

๏ Algorithm presented by Angluin [5]
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RO PUFs

๏ The security is relying on an assumption:

๏ The attacker cannot measure the frequencies of the rings
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Fragile security of RO PUFs

๏ N ring-oscillators  N(N-1)/2 pairs are possible

๏ Non-exponential CRP space!

๏ PAC learning for given levels of accuracy and confidence [6]

๏ Representation: polynomial-size Decision List (DL)

๏ Algorithm presented by Rivest [7]

๏ The reason for success:

๏ A hidden order of frequencies
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Hidden order 



Refined architectures



Let’s XOR k arbiter chains [8]

๏ Modeling attacks

๏ Applicable only up to a 

certain number of chains 

[9,10]

๏ Side channel analysis

๏ Successful but requires 

access to the challenges
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Controlled PUFs [4]



Our successful hybrid attack

๏ Combination of a lattice basis reduction attack and a

photonic side-channel analysis [14]

๏ Disclosing the hidden challenges, and delays

๏ Applicable to unlimited number of arbiter chains
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Linear behavior



Controlled XOR PUFs

๏ m measurements
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Hybrid attack [1]

๏ Extension to Multi-dimensional HSS

๏ In comparison to the HSS: smaller M

๏ HSS: 𝑀 ≫
𝑚𝑛 𝑚 − 𝑛 − 1

4

𝑛

๏ Multi-dimensional HSS: 𝑀 ≫ O(𝑚1.5)
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Bounded 
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[1] Ganji et al.: Lattice Basis Reduction Attack against Physically Unclonable Functions, In In Proc. of CCS 2015.



Experimental setup and results

๏ Results of the lattice basis reduction attack
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et al.: PAC  Learning of Arbiter PUFs. Security Proofs for Embedded Systems- PROOFS, 2014. 

Magma Computational Algebra System. http://magma.maths.usyd.edu.au/magma

Setting Approach M Total number of disclosed 

coefficients

n=11, k=11, 

m=78

(the number 

of hidden 

coefficients=4

4)

HSS 2160 44

Multi-dimensional 

HSS

26 44

n=32, k=32, 

m=370

HSS --- ---

Multi-dimensional 

HSS

215 123

Magma [3] on a virtual AMD64 server 

(1 core and 32 GB of RAM)

PEA [1]
B Multi-dimensional 

HSS

X

A
𝑓: ℝ → ℤ [2]

http://magma.maths.usyd.edu.au/magma


Noise: a real enemy?



Noisy PUFs

๏ Applying the same challenge  Different responses

๏ Due to the environmental variations

๏ Failure of the conventional learning methods

Is it possible to apply a PAC learning framework?

Yes! New PAC learning framework containing principles of learning 
theory and Boolean analysis
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fPUF

c=c1…cn r=0r=1r=1r=0


